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ABSTRACT: After decades of refinement, DNA testing methods have become essential tools in forensic sciences. They are essentially based on
likelihood ratio test principle, which is utilized specifically, by using as prior knowledge the allele frequencies in the population, to confirm or refute
a given kinship hypothesis made on two genotypes. This makes these methods ill suited when allele frequencies or kinship hypotheses are unavail-
able. In this paper, we introduce DNAc, a new clustering methodology for DNA testing based on a new similarity measure that allows an accurate
retrieval of the degree of relatedness among two or more genotypes, without relying on kinship hypotheses or allele frequencies in the population.
We used DNAc in analyzing microsatellite DNA sequences distributed among 12 genotypes from normal individuals from two distinct families. The
results show that DNAc accurately determines kinship among genotypes and further gathers them in the appropriate kinship groups.
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Although each individual’s DNA profile is unique, the DNA pro-
files of biologically related people show specific kinds of similarity
to each other. With DNA testing, these similarities can be detected
and used to link related individuals. Existing DNA testing
approaches for determining biological relationship target noncoding
DNA sequences in the human genome. The polymorphisms, or
variant versions of sequences, found in the genome, including
restriction fragment length polymorphisms, variable-number tandem
repeats, short tandem repeats, single-nucleotide polymorphisms, and
microsatellites or simple sequence repeats (1–3), occur in informa-
tive patterns and generational shifts in a given family and can thus
serve as genetic loci for DNA testing.

The use of microsatellites as genetic loci for the purpose of
DNA testing is one of the most frequently employed methods for
establishing biological relationships. This is attributed to their high
heterozygosity and polymorphism. To take advantage of their
information content, we have chosen to use microsatellites as
genetic loci in all of our experiments. However, DNAc can be used
with any kind of genetic loci that have high heterozygosity and
polymorphism.

Existing approaches for DNA testing are based on the likelihood
ratio principle (4,5). They are devised specifically to confirm or
refute a given kinship hypothesis between two or more genotypes
(5,6), but not to identify unknown kinship relations. In addition,
they rely on knowledge of allele frequencies in the population.
However, because of the absence of sufficient studies about the dis-
tribution of allele frequencies in various populations, this evaluation
remains a major challenge.

In this paper, we present DNAc, a new and original methodo-
logy for DNA testing. Unlike the likelihood ratio method that is
used merely to confirm or refute a given kinship hypothesis, DNAc
is a methodology that outputs the kinship degrees of the input
genotypes. DNAc comprises a new approach for encoding alleles, a
new similarity measure, and a new profile-clustering algorithm.
DNAc makes it possible to accurately pinpoint the degree of
kinship between two or more individuals without relying on
population allele frequencies. DNAc has the further advantage of
being effective even with small data sets.

To show the effectiveness of DNAc, we used a test based on
polymerase chain reaction (PCR) to investigate different patterns of
microsatellite DNA sequences distributed among normal family
members. We chose microsatellites with at least 80% heterozygosity
(see supplementary data in S1 and S2). The data were then
subjected to computer-assisted analysis. Our results clearly
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demonstrate the usefulness of DNAc for determining biological
relationships among DNA profiles and thus for gathering them
into appropriate parental groups.

Materials and Methods

Samples and Loci

Two families were analyzed using 112 and 32 microsatellites for
independent loci, respectively. In this work, we used microsatellites
as loci, but any kind of loci with high heterozygosity and high
polymorphism could be used with DNAc. The first family was
comprised of a brother and a sister, a half-brother to both, and an
unrelated individual as control. The second family was comprised
of a mother, a father, their daughter, and a half-sister of the daugh-
ter. The description of all loci is available as supplementary data
(Data S1 and S2) with this paper. The loci were chosen for their
high percentage of heterozygosity.

PCR Tests

The DNA was extracted from 200 lL of peripheral blood with
the QIAamp DNA mini kit (QIAGEN, Mississauga, Ontario).
Then the microsatellites were amplified by the use of PCR, using
specific sequences flanking the microsatellites as primers (Inte-
grated DNA Technology, Coralville, IA). The procedure consisted
of the manufacturer’s recommended protocol with a slight modifi-
cation. Briefly, PCR amplification was carried out in 10 lL of
reaction solution containing 10–20 ng DNA, 200 lM of each
dNTP, 2.5 mM MgCL2, 0.1 lM of each primer including the
labeled m13 queue, and 0.3 units of HotStar Taq (enzyme) (QIA-
GEN) in 1· PCR buffer and overlaid with oil. Denaturation was
performed at 95�C for an interval of 1–3 min, followed by
annealing at 55�C for 30 sec, and then chain extension at 72�C
for 40 sec, for a total of 35 cycles. To view the results, we
loaded the labeled DNA on a 6% polyacrylamide gel in an auto-
matic sequencing system (DNA 4300 sequencer; Li-Cor Com-
pany, Lincoln, NE). When the gel was laser scanned for bands,
the results often resembled supermarket bar codes (6). We then
evaluated microsatellite bands to differentiate parental origin. An
example of the visual result is shown in Fig. 1.

Encoding

The aim of the encoding technique presented in this section is to
transform the sizes of the alleles in the genotypes into integers,
such that alleles with the same size from the same locus in all the
genotypes yield the same integer. The encoding technique is
described later. Now, let M be a set of DNA profiles to be studied,
including S different alleles, and let E be the set of all possible
positions in the electrophoresis gel that each of these S alleles can
take. Pi,j is the position of the jth allele of the ith DNA profile. We
annotate each allele using the algorithm described later.

As an example, the result of the encoding of locus D6S1671 is
shown in Fig. 2. This example shows that the way Algorithm 1
assigns a code to each allele. The identification of codes in this
example is arranged left to right and top to bottom. At each itera-
tion of Algorithm 1, the position of the current allele is compared
to the positions of all previously encoded alleles. If at least one
previously encoded allele has the same position as the current
allele, then the latter takes the same code; otherwise, the current
allele takes the highest code incremented by one.

Encoding Algorithm

Input: DNA profiles
Initialization: E = ø, S = 1

For i = 1 to M do
For j = 1 to 2 do
If (Pi,j e E) then

Pi,j = s
S = S + 1
E = E + {Pi,j}

End If
Output: Positions of alleles

The New Similarity Measure

Almost all existing similarity measures used in the DNA field
are based on sequences. To the best of our knowledge, we are the

FIG. 1—Representative results of the laser scans on the polyacrylamide
gel obtained from PCR with 10 microsatellite markers. (For each panel, the
first three lanes A, B, and C are members of the same family; the last lane
D is a control sample from an unrelated individual.) The name of each mar-
ker is provided below the panel (i.e., the Ladder marker is not shown on
different figures).

FIG. 2—The encoding results of Algorithm 1 for one microsatellite mar-
ker of four individuals. A is the half-brother of B and C; B is the sister of
C; D is an unrelated individual. The numbers 1–5 are the resulting encod-
ing identifications of different alleles.
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first to present a similarity measure that directly handles the num-
ber of repetitions expressed by the size of each allele in each locus,
obtained by PCR amplification. The kinship between two DNA
profiles can be deduced from the proportion of shared genetic
material. The proportion can be expressed in terms of similarity.
Now, let M be the set of DNA profiles obtained using the DNA
extraction and PCR protocol presented earlier. First, we use Algo-
rithm 1 to encode the set of all alleles. Second, we compute the
similarity measure between DNA profiles X and Y, using the for-
mula below:

SX;Y ¼
1
N

XN

i¼1

Si
X;Y such that Si

X;Y¼
mi

c
mi

u�mi
c

if mi
u � mi

c 6¼ 0

1 if mi
u � mi

c ¼ 0

(

where, N is the number of loci, Si
X;Y is the similarity, mi

c is the
number of common alleles, and mi

u is the total number of different
alleles for a given locus ith of X and Y together. In real life, simi-
larities between different genotypes can arise by chance. To reduce
the effect of similarities of this kind on the DNAc accuracy, we
compute the similarity measure between genotypes after discarding
the noninformative loci (i.e., those present in all the DNA profiles
used in the same test). Table 1 gives an example of how similarity
is computed for the profiles shown in Fig. 2.

Relationship Testing

Paternity Testing—The DNA profile of a child is inherited from
both parents, with one allele for each locus derived from the
father’s DNA profile and the other from the mother’s profile. Thus,
the exclusion of paternity will be ascertained if at least one locus
from the child does not share any allele with the same locus from
the potential father. A sufficient condition for excluding paternity
with a probability equal to 1 is:

PX;Y ¼
YN
i¼1

Si
X;Y ¼ 0

For the case where the product aforementioned is nonzero, we
define the events A, B, and A¢ (in a probabilistic sense) such that:

• Event A: X is the father of Y
• Event B: Y has the same genetic locus as X
• Event A¢: X is not the father of Y

We have the following probabilities:
P(A|B) = The probability that X is the father of Y given the

observed genetic profiles.
P(B|A) = The probability of the observed genetic profiles given

that X is the father of Y.
P(B|A¢) = The probability of the observed genetic profiles given

that X is not the father of Y (equal to the square of the frequency
of the genetic locus in the population).

P(A) = The assumed probability before testing that X is the
father of Y.

P(A¢) = The assumed probability before testing that X is not the
father of Y.

P(A|B) is obtained by Bayes’ formula, as follows:

P
A

B

� �
¼

P B
A

� �
PðAÞ

P B
A

� �
PðAÞ þ P B

A0

� �
PðA0Þ

where P
B

A

� �
¼
YN
i¼1

Si
X;Y

Because there is a half probability that a child will inherit a spe-
cific genetic allele locus from a man if he is the child’s biological
father, here, only P(A), and P(A¢), and P(B|A¢) need to be identified
before plugging the values into Bayes’ formula as
P(A¢) = 1.0 ) P(A). To evaluate P B

A0

� �
, we need the frequency of

each allele in the whole population from which the profiles are
derived. This assumes a survey of the allele’s frequency in the pop-
ulation has already been conducted, which is not always the case.
All that remains is to identify P(A). Remember that P(A) is the
probability, assumed prior to testing, that the man is the biological
father of the child. In paternity testing, this probability is often
assumed to be 50%. For 10 loci of a given frequency fi, we can
see that the probability of paternity is a function that decreases with
fi (see Table 2 for details). An informative locus would be one
occurring with low frequency; otherwise, we would need to use a
high number of loci.

Other Relationship Testing—The closeness of any relationship
by biological inheritance is analyzable by this technique. To mea-
sure the degree of kinship, we have to compute the percentage of
common genetic inheritance. For a kinship of degree d, it is well
known that the proportion of genetic inheritance is given by 0.5d.
Thus, for a given similarity measure SX,Y between two DNA pro-
files X and Y, the degree d of kinship is computed simply as
follows:

SX;Y ¼ 0:50d ) log SX;Y ¼ log 0:50d ¼ d log 0:50

) d ¼ log SX;Y

�0:301

TABLE 1—Sample computation of similarity measure.

A B C D

A mi
u ¼ 2

mi
c ¼ 2

SA,A = 1

B mi
u ¼ 3

mi
c ¼ 1

SA,B = 0.5 mi
u ¼ 2

mi
c ¼ 2

SB,B = 1

C mi
u ¼ 3

mi
c ¼ 1

SA,C = 0.5 mi
u ¼ 4

mi
c ¼ 0

SB,C = 0 mi
u ¼ 2

mi
c ¼ 2

SC,C = 1

D mi
u ¼ 3

mi
c ¼ 1

SA,D = 0.5 mi
u ¼ 3

mi
c ¼ 1

SB,D = 0.5 mi
u ¼ 3

mi
c ¼ 1

SC,D = 0.5 mi
u ¼ 2

mi
c ¼ 2

SD,D = 1

TABLE 2—Probability of paternity as a
function of allele frequencies.

fi P

0.1 1.00000000
0.2 1.00000000
0.3 0.99999996
0.4 0.99998874
0.5 0.99902439
0.6 0.96391203
0.7 0.55033568
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The value of d is prominent in the choice of the number of loci
used in DNAc. Because the number of loci used leads to a given
similarity measure SX,Y, which in turn leads to a given kinship
degree d according to the formula above, in DNAc, the number of
loci is incremented until the value of d converges to an integer.
The initial number of loci used depends upon the number of wells
in one electrophoresis apparatus.

Clustering Algorithm

A hierarchical clustering approach outputs a structured set of
clusters, which is more informative and useful than the unstructured
set of clusters returned by partition-based clustering (7). It allows
more accurate detection of complex clusters, which is a major
advantage when it comes to determining the hierarchical represen-
tation of the hereditary relationships and the degree of kinship
between different DNA profiles.

Hierarchical clustering can be either ‘‘agglomerative’’ or ‘‘divi-
sive.’’ Hierarchical agglomerative clustering (HAC) iteratively
merges small clusters into larger clusters, while hierarchical divisive
clustering (HDC) iteratively splits clusters into smaller ones. HAC
algorithms make clustering decisions based on local patterns, with-
out taking into account the overall structure of objects. HDC algo-
rithms handle the overall structure of objects when making
clustering decisions, which makes HDC more accurate than HAC
(7).

The literature also reports the graph-theoretical clustering
approach based on the maximal spanning tree (MST). A spanning
tree of a connected and undirected graph is an acyclic and con-
nected subgraph, which contains all the vertices and some or all
branches of that graph. The MST of a weighted graph is the maxi-
mally weighted spanning tree of that graph. Like the HDC
approach, clustering algorithms based on MST take advantage of
the overall structure of objects in making clustering decisions. They
are capable of accurately detecting complex clusters (8).

Almost all of the existing algorithms that have been designed to
deal with the challenge of partitioning subsets that include complex
clusters are based on a hierarchical approach. They adopt the HAC
approach, because HDC is more computationally expensive and
conceptually complex. They then decide on a clustering by mini-
mizing the local variance of clusters. For instance, in the DBSCAN
(9) and SNN (10) algorithms, dense regions are detected and those
that are close are merged; in CURE (11), regions corresponding to
the closest pair of representatives are merged; in Chameleon (12)
and HBC (13), two clusters are merged if their interconnectivity is
comparable to their internal connectivity. However, the major
drawback with these approaches is that when they have to decide
whether two clusters should be merged, only the variance of the
clusters concerned is used, and the global variance of clusters is
usually ignored. This local decision may seriously affect the global
optimality of the final clustering. In addition, they adopt different
strategies, but all based on HAC approach to minimize the local
variance, which is known to reduce significantly the chance of
reaching a global minimum of variance (7). Moreover, the cluster-
ing results depend heavily on user-defined input parameters, for
which the tuning usually requires extensive efforts, see Table 3 for
details.

The main idea behind our clustering approach is to approxi-
mate the overall distribution of objects using an MST and to
apply an HDC approach using only the limited inter-object con-
nections in the MST. In fact, a conceptual graph can be built
from a set of objects to be clustered, each object being consid-
ered as a vertex. From the weighted, complete, and undirected

graph modeling the similarities between all possible pairs of
objects, the starting point of our approach is to build the spanning
tree that spans this graph with the maximum total weight. The
clustering is then performed as a hierarchical divisive process.
Starting from the global MST, we iteratively select and subdivide
the subtree that contains the branch of the current minimal weight
into two subtrees by cutting off this branch. Subdivision is
repeated until each remaining subtree includes only one vertex.
Each subdivision results in an enlarged set of subtrees considered
as cluster candidates. This set is evaluated according to a novel
criterion that is defined as the ratio between the overall compact-
ness within the candidates and the overall compactness between
the candidates. A detailed description is given in the rest of this
section.

Starting from V, the set of vertices representing the set of N
objects (i.e., genotypes) to be clustered, we build T(V,B), the MST
in which the weight w(b) of a branch b e B linking two vertices is
the similarity between the corresponding objects. Now, let the tree
TP(VP,BP) be a subtree of T(V,B), where VP ˝ V and BP ˝ B. We
then define the weight w(TP) of the tree TP(VP,BP) as the average
weight of all its branches, as follows:

wðTPÞ ¼
P

b2BP
wðbÞ

jBPj

The weight w(TP) captures the compactness information of the
group of objects covered by the tree TP(VP,BP). The major advan-
tage of measuring the compactness using MST is its time efficiency
and its effectiveness in capturing the compactness of complex clus-
ters with arbitrary structures. For the special case of a subtree with
only one vertex, the weight cannot be calculated in the way
described earlier. Here, we merely assign to the weight the maxi-
mal value ‘‘1.0’’, because an object is considered as a cluster with
maximal compactness.

Now, let bmin e BP be the branch of minimal weight within the
subtree TP(VP,BP), and let TL(VL,BL) and TR(VR,BR) be a bipartition
of TP(VP,BP) resulting from cutting off the branch bmin. We then
define the cosimilarity c(TP) of the tree TP(VP,BP), as follows:

cðTPÞ ¼ wðbminÞ �
wðTLÞ � wðTRÞ
wðTLÞ þ wðTRÞ

The cosimilarity concept draws its inspiration from Ward’s dis-
similarity (14), also called Minimum Variance Clustering, which
has been successfully used for solving HAC problems. The role of
Ward and Hook’s dissimilarity in HAC is to measure the dissimi-
larity between clusters to decide whether or not they should be
merged (7). The concept of cosimilarity proposed here is intended

TABLE 3—Input parameters of different clustering algorithms.

Algorithm Parameter Description

DBSCAN Eps Neighborhood of a point
MinPts Minimum number of points

CURE k Number of clusters
a Shrinking factor
t Representative points

Chameleon k-NN k-nearest neighbor
MinSize Initial clustering
a Interconnectivity vs. closeness

HBC mratio Subclusters to be merged
a Connectivity
b Proximity

SNN Eps Density measurement
MinPts Choice of core points
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to measure the compactness of objects covered by the tree
TP(VP,BP) considered as a cluster candidate. The concept of cosimi-
larity provides a measure to evaluate whether the subtrees
TL(VL,BL) and TR(VR,BR) should belong to the same cluster.

For the special case of a subtree with only one vertex, however,
the cosimilarity cannot be calculated in the way described earlier,
because this tree cannot be subdivided. Here, we assign a prede-
fined value to the cosimilarity, which is the only input parameter
that needs to be set by the user to tune the clustering result. This
has an important impact on the final optimal number of clusters.
The optimal number of clusters obtained is inversely proportional
to the value of this parameter.

Now, let us consider the set of cluster candidates, any set of sub-
trees obtained by cutting branches of T(V,B). Hereafter, a subtree
in this set is called an inner-subtree, and a subtree that does not
belong to any inner-subtree is called an outer-subtree. We use Tis

to represent the set of inner-subtrees and Tos to represent the set of
outer-subtrees. We introduce the concept of inner-cosimilarity, Cic,
defined as the average cosimilarity of inner-subtrees, and Coc, the
outer-cosimilarity, defined as the average cosimilarity of outer-sub-
trees, such that:

Cic ¼
1
jTisj

X
t�Tis

cðtÞ and Cos ¼
1
jTosj

X
t�Tos

cðtÞ

The inner-cosimilarity aims to measure the overall compactness
within the candidates, while the outer-cosimilarity aims to measure
the overall compactness between the candidates. Thus, the cluster-
ing process will be merely a compromise between maximizing Cic

the cosimilarity of inner-subtrees and minimizing Cos the cosimilar-
ity of outer-subtrees. This can be obtained by the ratio of Cos and
Cis. Therefore, the final clustering choice is obtained by
maximizing:

Cic

Cos
¼ jTosj
jTisj

P
t�Tis

cðtÞP
t�Tos

cðtÞ

However, a na�ve approach for making a choice of Tis and Tos

that maximizes the ratio Coc
Cic

, among all possible choices, has qua-
dratic time complexity. To overcome this drawback, we consider
only a small subset of choices that have a good chance of maxi-
mizing the ratio Coc

Cic
. We have adopted a hierarchical method that

allows us to make this choice in a linear time. The main idea of
this method is that instead of visiting all possible choices of Tis and
Tos belonging to T(V,B), we visit in a top-down way only those
trees generated by cutting off the branches of maximum weight,
which requires complexity Q(N) in time and space.

Results and Discussion

In this paper, we present a new DNA testing method, and to the
best of our knowledge is the first specifically developed to retrieve
the degree of relatedness among genotypes. Unfortunately, there
are no other methods, developed to achieve the same task, to per-
form comparison experiments. The clustering algorithm presented
in our paper is a part of our DNA testing method, and in our
experiments, we tested several clustering algorithms, and the
obtained results were not so satisfactory for publication; this is
mainly caused by the number of objects to be clustered.

To show the effectiveness of DNAc, we performed two blind
tests on two groups of individuals. The first test was performed on
three members of the same family and an unrelated fourth individ-
ual. The second test involved four members from a single family.

For the first test, we used 112 loci; for the second, only 32. The
lists of all alleles and all loci for each individual in each test are
available with this paper as supplementary material (Data S1 and
S2).

The first test was performed on four individuals, , , , and
, where individual is the half-brother of and , individual

is the sister of , and individual is unrelated to any of , ,
and . The genetic inheritance results of our new similarity mea-
sure are shown in Table 4. Using the previously cited formula for
computing d, the degree of kinship, we conclude that and have
a kinship of degree d = 1, which means that and are brother
and sister, while has a relationship of degree d = 2 with both
and , which means that is their half-brother. The very low sim-
ilarity of , the individual unrelated to the family, is in line with
the known relationships. The similarity measures obtained show the
effectiveness of our new kinship similarity measure in predicting
the genetic inheritance of the different individuals. Furthermore, the
clustering algorithm was able to group individuals , , and in
the same cluster, while individual was grouped in his own clus-
ter, which also confirms the effectiveness of our new clustering
algorithm for grouping even a small number of DNA profiles in
the right clusters.

The second test was performed on four individuals , , , and
. Individual is the wife of , while is their child and is

the child of and half-sister of . Our new similarity measure
yielded the genetic inheritance results shown in Table 5. Using the
formula for computing d, we conclude that all the pairs of individu-
als and , and , and and have a kinship of degree
d = 1, while individuals and have a kinship of degree d = 2.
In addition, given the low level of similarity between the pair of
individuals and and between the pair of individuals and ,
we can conclude there is no kinship within the individuals of each
pair. These results coincide with the known pairwise relationships
of the individuals.

We also performed two clustering tests, the first on the group
of all individuals , , , and , and the second on the same
group with individual omitted. In the first test, we obtained
one cluster including all the individuals , , , and , while
in the second test, we obtained two clusters, the first including
individual and the second including individuals and .

Because there is no kinship between individual and indi-
viduals, it is normal that in the second test, should have been

TABLE 4—Similarities given by DNAc for the first family.

1.0000

0.2857 1.0000

0.2387 0.4345 1.0000

0.0383 0.0800 0.0725 1.0000

TABLE 5—Similarities given by DNAc for the second family.

1.0000

0.4631 1.0000

0.1578 0.4629 1.0000

0.4210 0.2777 0.4354 1.0000
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clustered apart from individuals and . In the first test, how-
ever, the inclusion of individual in the clustering process
shows individual as having a kinship with individuals and

, a virtual kinship because they were all related to . These
results once again confirm the effectiveness of our new cluster-
ing algorithm in grouping a small number of DNA profiles in
suitable clusters.

Conclusion

The likelihood ratio method is applicable when someone wants
to confirm or refute a kinship hypothesis, but not for identifying an
unknown degree of kinship between different genotypes. This is
precisely the reason for proposing DNAc in this paper. DNAc is an
alternative to the currently accepted likelihood ratio method in the
special case where no kinship hypothesis is available.

In this paper, we have developed DNAc, an effective methodol-
ogy for rapidly generating DNA profiles and clustering them
according to kinship. DNAc circumvents the difficulties presented
by existing DNA testing methods, including the need for population
allele frequencies; it more accurately and systematically highlights
the relations of the clustered DNA profiles; and it is effective even
with small data sets. It thus provides laboratories with a new and
more useful and attractive instrument for generating and analyzing
DNA profiles.
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